

STON 0825

8 canali

SCHEDA TECNICA

rev. 3.6 27 Agosto 2024

Kernel Sistemi Kernel Sistemi s.r.l. , via Vignolese n. 1138 41126 Modena - ITALY Tel. 059 469 978 - Fax 059 468 874 www.kernelgroup.it

INDICE

1	SICUREZZA	5
2	NOTE GENERALI	4
2.1	Introduzione	
3	CARATTERISTICHE HARDWARE	6
3.1 3.2	Caratteristiche Hardware	
3.4	Connettore : CN1	8
3.5 3.6 3.7	Connettore : CN4	9
3.7 3.8 3.9	Protezione della Memoria	9
3.10 3.11	Sistema di fissaggio per la scheda versione "naked" (senza il supporto DIN)	12
	Led di segnalazione status	12
4	MAPPA DI MEMORIA	14
	Descrizione mappa di memoria	
5	CODICI D'ORDINE	18
6	CONTATTI	19

Attenzione

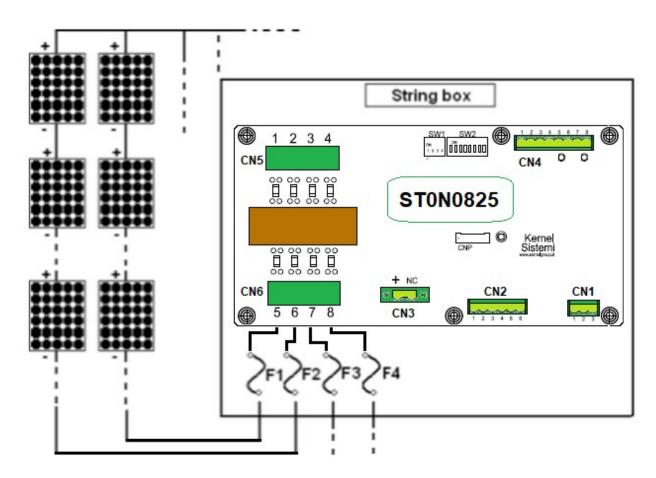
Le informazioni contenute in questo documento possono variare senza preavviso. Si prega quindi di controllare sul nostro sito web (<u>www.kernelgroup.it</u>) e scaricare sempre l'ultima versione disponibile.

1 SICUREZZA

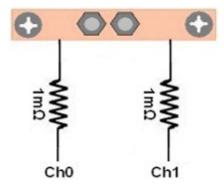
Questo prodotto è una String Monitoring Unit (SMU) e la sua applicazione è il monitoraggio degli impianti fotovoltaici. Da un punto di vista elettrico, per loro natura, gli impianti fotovoltaici funzionano in corrente continua e con valori di tensioni e correnti molto elevate.

PERICOLO PERICOLO - Questo prodotto è quindi previsto per funzionare con valori di tensioni in corrente continua fino a 1500 VDC. Questo valore di tensione è potenzialmente mortale. Valori di tensione compresi fra 24 VDC e 1500 VDC sono quindi presenti su questo prodotto. -Tutti i trasduttori connessi ai connettori degli ingressi ausiliari devono essere isolati a 1500 VDC. Questi trasduttori sono PT100 e, nel caso delle famiglie ST2N e ST2, anche i trasduttori con uscita 0/10 VDC e 0/20 mA (tipicamente anemometri)

PERICOLO - L'installazione e/o la sostituzione di questo prodotto, deve avvenire in assoluta sicurezza per cui occorre procedere all'installazione e/o la sostituzione di questo prodotto che alloggia all'interno del quadro di campo dopo aver disconnesso le fonti di corrente e di tensioni pericolose provenienti dai pannelli solari. - In ogni caso, qualsiasi intervento che comporti il maneggiamento della SMU, deve essere svolto da tecnici specializzati e formati dotati di guanti di isolamento previsti per valori di tensione fino a 1500 VDC e dopo aver disconnesso qualsiasi tensione e corrente proveniente dai pannelli solari.

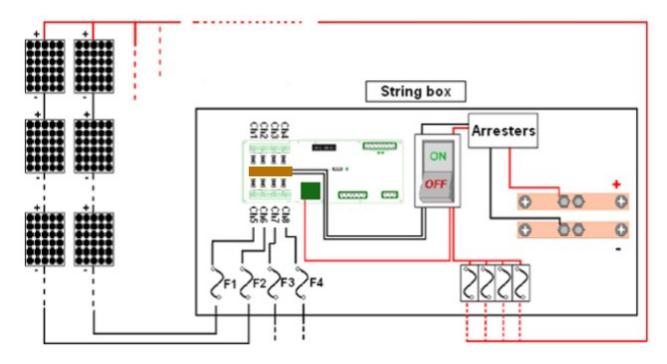

		Importanti istruzioni di sicurezza
	PERICOLO	- Il contatto con i terminali di cablaggio all'interno del dispositivo può causare la morte per scossa elettrica! -Prima di operare all'interno delle schede con tester, o con altre apparecchiature di misura, è obbligatorio APRIRE i fusibili e gli altri componenti che possono portare alta tensione all'interno delle schede.
<u> </u>	ATTENZIONE	 Si prega di controllare tutti i terminali dei cavi di ingresso e uscita in caso di alta tensione CC e assicurarsi che non ci sia tensione prima del collegamento elettrico per evitare scosse elettriche! Non toccare le parti in tensione in ingresso e in uscita per evitare scosse elettriche durante il controllo o la manutenzione del dispositivo. Tutti i collegamenti di installazione e cablaggio devono essere eseguiti esclusivamente da personale tecnico qualificato.
<u>^</u>	CAUTELA	 Tutti i cablaggi e il funzionamento devono essere conformi ai requisiti degli standard locali pertinenti del dispositivo. Controllare il dispositivo e assicurarsi che non ci siano problemi con l'installazione prima di metterlo in funzione! Collegare i fili alle posizioni contrassegnate (positivo e negativo) del dispositivo per evitare il rischio di cortocircuito, garantire la sicurezza personale e mantenere il dispositivo in normale funzionamento.
•	IMPORTANTE	Riferimento alle norme vigenti Per ogni altra considerazione, precauzione relative alla sicurezza, è assolutamente necessario, prima di effettuare qualsiasi intervento di installazione e/o sostituzione della SMU, fare riferimento alla norme vigenti per quanto riguarda la realizzazione di quadri elettrici combiner boxes.

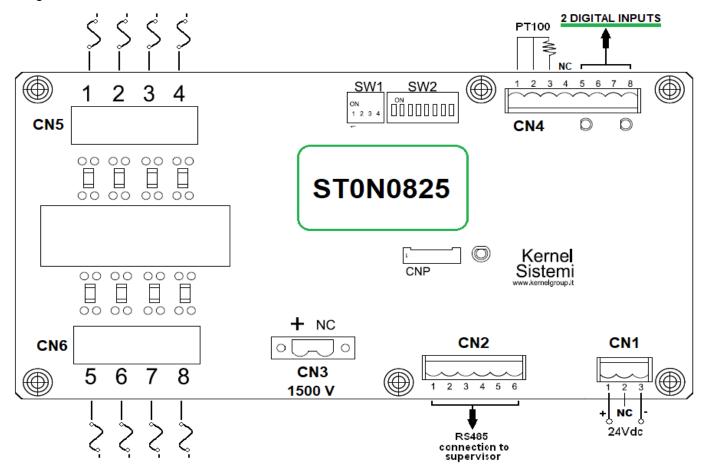
4


2 NOTE GENERALI

2.1 Introduzione

Il modulo STON per controllo di stringhe, consente di monitorare corrente e tensione generata da stringhe di pannelli fotovoltaici. Per ogni stringa è possibile collegare per esempio 32 pannelli fotovoltaici da 36 V con il polo positivo collegato fra loro. Il polo negativo di ogni stringa viene portato all'ingresso dedicato, come in figura:


Subito dopo la morsettiera di ingresso delle stringhe, sulla scheda STON è presente una resistenza, necessaria a rilevare il passaggio di corrente :


ed infine una barra di rame congiunge tutti i poli negativi, creando così uno 0 V comune.

La scheda STON ha inoltre a disposizione due ingressi digitali, uno analogico e un sensore di temperatura a bordo. In particolare, l'ingresso analogico è per connessione PT100. Gli input digitali consentono di rilevare lo stato del sezionatore o dello scaricatore; un input viene tipicamente connesso ad un sensore collegato alla "chiusura coperchio" del box stringa.

È possibile comunicare con la scheda STON tramite una porta seriale RS485. Utilizzando il protocollo **Modbus RTU**, o il protocollo **IEC 60870-5-101**, è possibile monitorare tutte le grandezze fisiche misurate (temperatura, corrente, tensione). Inoltre è possibile tenere monitorato lo stato dei fusibili nel box stringa, tramite la lettura di un registro interno nella mappa di memoria (30034).

Nell'immagine seguente si vede il "Controllo di Stringa STON" con tutti i collegamenti. Chiaramente non è strettamente necessario collegare tutti gli elementi riportati in figura, essi sono solamente indicati per fornire un'idea generale dei collegamenti.

3 CARATTERISTICHE HARDWARE

3.1 Caratteristiche Hardware

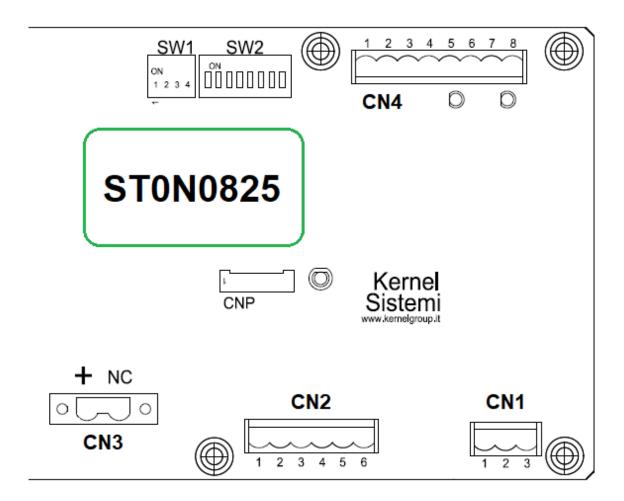
CARATTERISTICHE ELETTRICHE						
Microprocessore	STM32F303					
Alimentazione	24 V	dc				
Potenza Assorbita (W)	< 3 W					
Numero massimo di stringhe monitorate	8					
Tensione massima comune	1500 V con precisione	migliore dello 0,5 %				
Massima corrente per ogni stringa	25 A					
Range di misurazione	0 200 A					
Accuratezza lettura corrente	Migliore de	llo 0,15 %				
Precisione lettura corrente	Tipicamente 0,5 %					
Comunicazione	RS485 / RS487 (Modbus RTU o IEC 60870-5-101)					
Ingressi digitali	2 ingressi digita	ıli 24 Vdc PNP				
Ingressi analogici	1 input PT100 + 1 sensore di temperatura la temperatura all'inter					
Range temperatura di lavorazione	Da -40 a	+85 °C				
Atmosfera di funzionamento	Libera da ga	s corrosivi				
Indirizzamento Defi		lip-switches				
Dimensioni (naked)	208,9 x 108 mm					
Dimensioni (con supporto per barra din)	212,9 x 1	28 mm				
Umidità di lavoro Inferiore al 95 % senza condensa						
MTBF	> 500000 ore					
Massima Altitudine Operativa	5000 metri					
Corrente Minima	1 A (programmabile)	dalla Versione di Firmware :				
Tensione Minima	100 V (programmabile)	1.31 in poi				

N°	Tipi di risorse	Simbolo	Connettore
1	Sensore a bordo scheda per la lettura della temperatura del quadro (precisione migliore del 1,5%)	Т2	Sulla Scheda
1	Porta seriale RS485 sdoppiata. Questa porta seriale è usata per connettere diverse "Controlli di Stringa ST0N" in una rete o ad un PC. E' possibile selezionare attraverso i dip-switches sulla scheda, le caratteristiche di comunicazione (indirizzo di nodo, baud rate, parità, e protocollo di comunicazione, il quale potrà essere Modbus RTU o IEC 60870-5-101). Questa COM è divisa in due connettori per facilitarne i cablaggi	PORTA SERIALE	CN2
1	Ingresso PT100 (da -20 a +120 °C) per lettura temperatura, con precisione migliore dell' 1,5 $\%$	T1	CN4
2	Ingressi digitali PNP 24 Vdc, usati tipicamente per la connessione di scaricatori, sezionatori o altri dispositivi	INPO, INP1	CN4
8	La scheda è in grado di gestire la lettura della corrente di 8 stringhe fino a 25 A con precisione tipicamente dello 0,5 % e temperatura variabile da -40 a +85 $^{\circ}$ C	Ch1Ch8	CN5, CN6

3.2 Dissipazione di Potenza

Prima di tutto dobbiamo distinguere tra "dissipazione di potenza" e "consumo di potenza": la dissipazione di potenza è la quantità totale di potenza dissipata dalla SMU, suddivisa in due parti: la parte necessaria per alimentare l'elettronica e la parte dissipata dagli shunt usati per misurare le correnti della stringa. Solo la parte necessaria per l'elettronica (il consumo di potenza) deve essere fornita dall'alimentatore esterno a 24 V, questa parte è fissa e in genere è inferiore a 3 W (125 mA) per tutti i modelli di SMU.

La parte dissipata dallo shunt è variabile e dipende dal numero di shunt e dalla corrente che scorre in essi. Per calcolare la dissipazione di ciascun canale è possibile utilizzare la seguente formula, valida per tutti i modelli di SMU:


Potenza Dissipata = corrente * corrente * 0.001 (dove 0,001 è la resistenza in ohm dello shunt) dopodiché si deve moltiplicare per il numero di canali (shunt)

- Esempio STON0825 : se si considera una corrente di 25 A si ha : 25 * 25 * 0.001 * 8 = 5.0 W
- Esempio STON0825 : se si considera una corrente di 12.5 A si ha : 12.5 * 12.5 * 0.001 * 8 = 1.25 W

Questa parte di alimentazione non deve essere fornita dall'alimentatore esterno a 24 V poiché è generata direttamente dalla corrente delle stringhe.

IMPORTANTE

È possibile alimentare la scheda direttamente dai pannelli fotovoltaici, utilizzando un alimentatore DC/DC isolato per uso fotovoltaico. Naturalmente occorre tenere presente che prima dell'alba e dopo il tramonto la tensione dal PV è zero, quindi il convertitore DC/DC non funziona e la scheda non è alimentata.

3.3 Connettore: CN1

3.4 Connettore: CN2

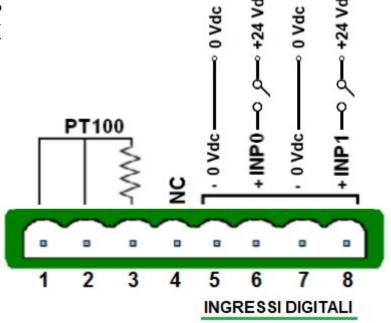
Sul connettore CN2 è presente una porta seriale RS485 suddivisa in 3 fili : più, meno e GND. È necessario collegare questi tre fili al convertitore USB / RS485. I pin del connettore che devono essere collegati sono il pin 6 (GND), 5 (-) e 4 (+).

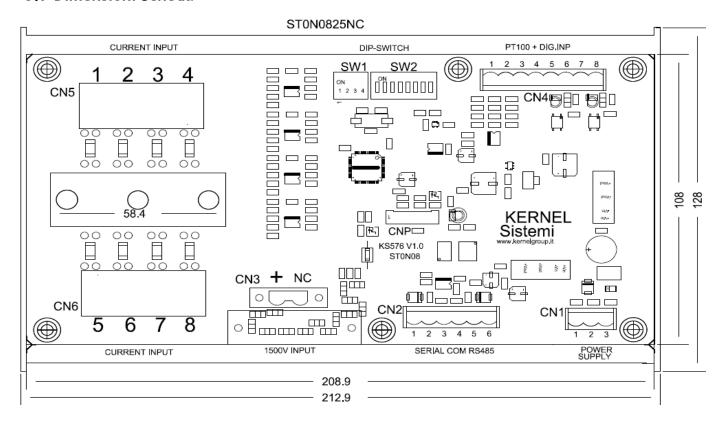
Sono presenti dei bridge, all'interno delle schede, per semplificare il cablaggio della RS485.

- Il pin 1 è collegato, all'interno del PCB, al pin 4
- Il pin 2 è collegato, all'interno del PCB, al pin 5
- Il pin 3 è collegato, all'interno del PCB, al pin 6

E' possibile entrare con 3 cavi RS485 nei pin 1,2,3 e uscire con 3 cavi RS485 dai pin 4,5,6.

3.5 Connettore: CN3

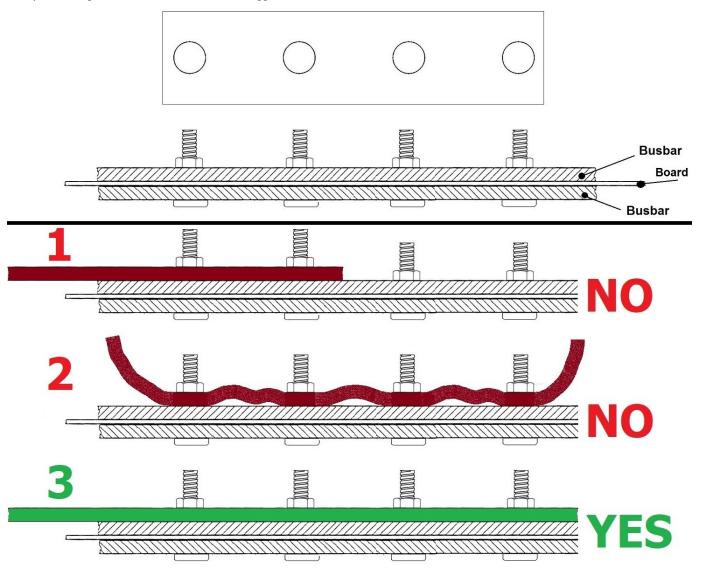

Per leggere la tensione, è necessario collegare il negativo della stringa di pannelli a un canale e il positivo al pin positivo del connettore CN3. Si potrà leggere il valore della tensione nel 30040.



3.6 Connettore: CN4

È possibile collegare una PT100 per leggere la temperatura esterna. La PT100 potrebbe essere a 2 o 3 fili e deve essere collegata nel modo seguente al morsetto CN4. Potete trovare questa temperatura nel registro 30044.

3.7 Dimensioni Scheda


3.8 Protezione della Memoria

La memoria è sempre protetta dalla scrittura! Per abilitare la scrittura per un tempo limitato (10 minuti), è necessario scrivere :

Valore: 0x5555 Hex Registro Modbus: 40100

3.9 Busbar

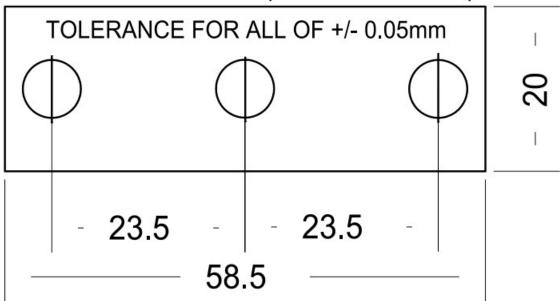
Esempi di collegamento della barra di rame "aggiuntiva":

Se fosse necessario "prolungare" la barra occorre seguire le seguenti regole fondamentali :

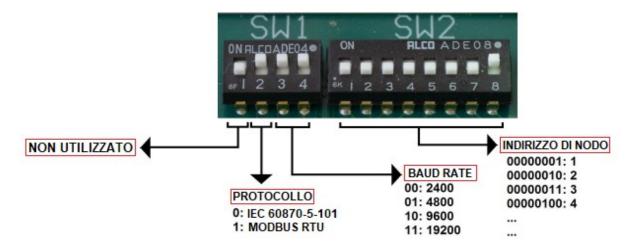
- 1. La barra aggiunta deve essere connessa a tutta la barra, cioè essere collegata a tutti i bulloni (con la corretta coppia di serraggio).
- 2. Non deve presentare curve o irregolarità.
- 3. Deve essere assolutamente in piano, in modo da essere perfettamente a contatto con tutta la superficie della barra presente sulla scheda. Questa busbar di connessione DEVE essere perfettamente planare.

 Occorre quindi controllare che queste busbar siano perfettamente planari PRIMA di fissarle alla busbar della scheda.

E' necessario fissare PRIMA la "busbar di connessione allo switch disconnector" alla SCHEDA, poi eseguire il fissaggio di questa busbar allo Switch Disconnector. Così facendo, il perfetto contatto fra la "busbar di connessione allo S.D." e la busbar sulla scheda è garantito.

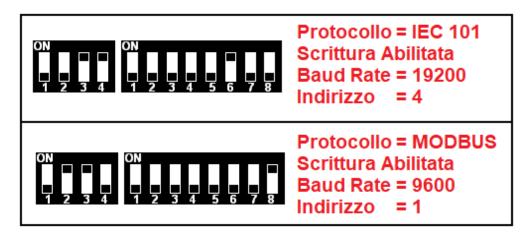

ATTENZIONE

Le dimensioni della barra vanno calcolate in funzione delle CORRENTE MASSIMA possibile (seguire le apposite tabelle delle normative)


In alternativa alla barra è possibile collegare più CAVI alla barra di rame presente sulla scheda : anche in questo caso i cavi devono essere opportunamente dimensionati in funzione delle CORRENTE MASSIMA possibile (seguire le apposite tabelle delle normative)

Dimensioni Busbar: (n.1 BARRA Lato Componenti + n.1 BARRA Lato Saldature)

TIN BAR WITH 3 HOLES (FOR M6 SCREWS)



3.10 Dip-switches

Note: Parità = NO_PARITY; Bit = 8; Stop = 1

Alcuni esempi di impostazione dip-switches:

3.11 Sistema di fissaggio per la scheda versione "naked" (senza il supporto DIN)

Per fissare la scheda versione "naked" (senza il supporto DIN) è necessario l'utilizzo di distanziali in plastica con doppio gancio. I distanziali in plastica dovranno essere 4x20 mm o 4x25 mm (4 mm è il diametro del foro sulla scheda).

Vedi figura a lato >>>

3.12 Led di segnalazione status

Sulla scheda è presente un led di segnalazione status che mostra, in base al tipo di lampeggio, lo stato in cui si trova la scheda controllo stringhe. Sono possibili due differenti tipi di lampeggio: ogni 0,5 sec, oppure un lampeggio veloce, molto più rapido. Se il lampeggio è 0,5 sec ON e 0,5 sec OFF, significa che la scheda è pronta per comunicare con un oggetto esterno, invece se il lampeggio è più rapido di così, significa che il dispositivo si trova in modalità di test e vi saranno tutti I dip-switch OFF. In questo caso la scheda non è pronta per comunicare con un dispositivo esterno.

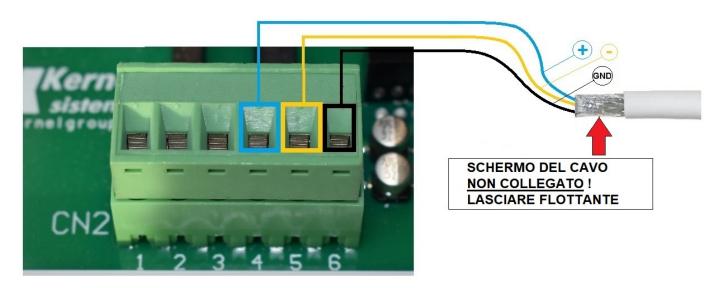
3.13 Cavo di comunicazione RS 485

Tutto ciò che riguarda la connessione RS 485 dovrà rispettare determinate caratteristiche elencate di seguito:

Lunghezza massima cavo

Il cavo dovrà essere non più lungo di 1,2 Km (come lunghezza massima si intende la lunghezza completa della rete, non la sola connessione fra due nodi).

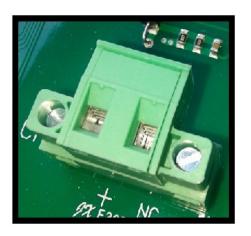
Numero massimo di slaves


E' possibile collegare fino ad un massimo di cento slaves

Caratteristiche tecniche del tipo di cavo da usare

Il cavo di connessione dovrà essere un cavo a tre fili 3 x 0.75 mm

Come eseguire la connessione RS 485


La connessione RS 485 dovrà essere una connessione a tre fili (TX+, TX- e GND) con cavo schermato. La schermatura del cavo dovrà esser lasciata flottante, questo significa che la schermatura non dovrà essere collegata a nessuna delle due estremità del cavo.

3.14 Informazioni su cablaggi e morsettiere

CONNETTORI CANALI				
Sezione Nominale	16 mm²			
Lunghezza di Spelatura	10 mm			
Sezione Conduttore in AWG/kcmil	20 - 6			
Vite	M4			
Coppia Min / Max	1.20 Nm / 1.50 Nm [10.6 Lbf-In / 13.3 Lbf-In]			
Temperatura di esercizio	dipende dalla curva di declassamento			

CONNETTORE TENSIONE				
Sezione Filo	2.5 mm² / 0.20-2.5 mm²			
Lunghezza di Spelatura	7 mm			
Sezione Conduttore in AWG/kcmil	24 - 12			
Vite	M3			
Coppia Min / Max	0.50 Nm / 0.60 Nm [4.4 Lbf-In / 5.3 Lbf-In]			
Temperatura di esercizio	-40°C ÷ (dipende dalla curva di declassamento)			

ALTRI CONNETTORI (Alimentazione, Seriale)			
Sezione Filo	2.5 mm ² / 0.34-2.5 mm ²		
Lunghezza di Spelatura	7 - 8 mm		
Sezione Conduttore (AWG)	12-24 / 14-22		
Vite	M3		
Coppia Max	0.56 Nm [5.0 Lbf-In]		
Temperatura di esercizio	-40°C ÷ +115°C		

Barra di Rame			
Coppia Min / Max	2.2 Nm / 2.5 Nm [19.5 Lbf-In / 22.1 Lbf-In]		

4 MAPPA DI MEMORIA

L' STON ha la seguente mappa di memoria, essa è costituita da locazioni a 16 bits (1 word) chiamate "REGISTRI". Siccome ogni REGISTRO è composto da 16 bits, il suo valore massimo sarà 65535.

Registro MODBUS	TIPO	DESCRIZIONE	
30001	RO	Ingressi	
30002	RO	Corrente Istantanea Str_01 (mA [025000])	
30003	RO	Corrente Istantanea Str_02 (mA [025000])	
30004	RO	Corrente Istantanea Str_03 (mA [025000])	
30005	RO	Corrente Istantanea Str_04 (mA [025000])	
30006	RO	Corrente Istantanea Str_05 (mA [025000])	
30007	RO	Corrente Istantanea Str_06 (mA [025000])	
30008	RO	Corrente Istantanea Str_07 (mA [025000])	
30009	RO	Corrente Istantanea Str_08 (mA [025000])	
• • •			
30034	RO	Stato Fusibili (Ch1Ch8)	
•••			
30040	RO	V_1 Istantanea (V [01500])	
30044	RO	T_1 Istantanea (°C [-20+120]) - PT100	
30045	RO	T_2 Istantanea (°C [-22,0+83,0]) - a bordo scheda	
200.47	20	5 10 10 10 10 10 10 10 10 10 10 10 10 10	
30047	RO	Somma di tutte le correnti (A / 10)	
30048	RO	Potenza (W) - LSW	
30049	RO	Potenza (W) - MSW	
30052	RO	Corrente Filtrata Str_01 (calcolato in una finestra di 6 sec.)	
30053	RO	Corrente Filtrata Str_02 (calcolato in una finestra di 6 sec.)	
30054	RO	Corrente Filtrata Str_03 (calcolato in una finestra di 6 sec.)	
30055	RO	Corrente Filtrata Str_04 (calcolato in una finestra di 6 sec.)	
30056	RO	Corrente Filtrata Str_05 (calcolato in una finestra di 6 sec.)	
30057	RO	Corrente Filtrata Str_06 (calcolato in una finestra di 6 sec.)	
30058	RO	Corrente Filtrata Str_07 (calcolato in una finestra di 6 sec.)	
30059	RO	Corrente Filtrata Str_08 (calcolato in una finestra di 6 sec.)	
30084	RO	V_1 Filtrata (V [01500]) (calcolato in una finestra di 6 sec.)	
•••			
30088	RO	T_1 Filtrata (°C [-20+120]) (calcolato in una finestra di 6 sec.)	
30089	RO	T_2 Filtrata (°C [-22,0+83,0]) (calcolato in una finestra di 6 sec.)	
•••			
30091	RO	Somma Filtrata di tutte le Correnti (A / 10) (calcolato in una finestra di 6 sec.)	
30092	RO	Potenza Filtrata (W) - LSW (calcolato in una finestra di 6 sec.)	
30093	RO	Potenza Filtrata (W) - MSW (calcolato in una finestra di 6 sec.)	

www.kernelgroup.it			Kernel Sistemi s.r.l.	
30201	PO	Varsiana Firmwara	COLA I ETTUDA	

30202	RO	Modello SMU	SOLA LETTURA	
30203	RO	Numero di Canali	SOLA LETTURA	
30204	RO	Tipo di Shunt	SOLA LETTURA	
30205	RO	Fondo Scala	SOLA LETTURA	
30206	RO	Reserved for Future Use	RFU	
30207	RO	Reserved for Future Use	RFU	
30208	RO	Reserved for Future Use	RFU	
30209	RO	Reserved for Future Use	RFU	
30210	RO	Reserved for Future Use	RFU	
30211	RO	Codice Univoco ID [0]	SOLA LETTURA	
30212	RO	Codice Univoco ID [1]	SOLA LETTURA	
30213	RO	Codice Univoco ID [2]	SOLA LETTURA	
30214	RO	Codice Univoco ID [3]	SOLA LETTURA	
30215	RO	Codice Univoco ID [4]	SOLA LETTURA	
30215	RO	Codice Univoco ID [5]	SOLA LETTURA	
	NO	Codice Offivoco in [5]	JOER ELITORA	
40001	RW	Impostazione della PARITÀ : 1 = NONE ; 2	: EVEN ; 3 : ODD	
40002	RW	Offset Corrente Str_01		
40003	RW	Offset Corrente Str_02		
40004	RW	Offset Corrente Str_03		
40005	RW	Offset Corrente Str_04		
40006	RW	Offset Corrente Str_05		
40007	RW	Offset Corrente Str_06		
40008	RW	Offset Corrente Str_07		
40009	RW	Offset Corrente Str_08		
	100	onset contente sti_co		
40034	RW	Ritardo della risposta (msec)		
40035	RW	Tempo COM Attiva (1/10 sec.)		
40036	RW	Parità (1 = None, 2 = Even, 3 = Odd) = 400	01	
40037	RW	Soglia Fusibili		
•••				
40040	RW	Offset V_1		
40044	RW	Offset T_1		
40045	RW	Offset T_2		
		-		
40047	RW	Corrente Minima (Default = 1 A)		
40048	RW	Tensione Minima (Default = 100 V)		
•••				
40052	RW	Guadagno Corrente Str_1		
40053	RW	Guadagno Corrente Str_2		
40054	RW	Guadagno Corrente Str_3		
40055	RW	Guadagno Corrente Str_4		
40056	RW	Guadagno Corrente Str_5		
40057	RW	Guadagno Corrente Str_6		

www.kernelgroup.it		,	7	
	WWW.I	kernei	arou	D.It

Kernel Sistemi s.r.l.

40058	RW	Guadagno Corrente Str_7	
40059	RW	Guadagno Corrente Str_8	
•••			
40090	RW	Guadagno V_1	
•••			
40094	RW	Guadagno T_1	
40095	RW	Guadagno T_2	
••			
40101	RW	Memoria Utente 01	
40102	RW	Memoria Utente 02	
40103	RW	Memoria Utente 03	
40104	RW	Memoria Utente 04	
40105	RW	Memoria Utente 05	
40106	RW	Memoria Utente 06	
40107	RW	Memoria Utente 07	
40108	RW	Memoria Utente 08	
•••			
40201	RO	Tipo di Shunt (= 30204)	SOLA LETTURA
40202	RO	Modello SMU (= 30202)	SOLA LETTURA
40203	RO	Versione Firmware (= 30201)	SOLA LETTURA
40204	RO	Numero di Canali (= 30203)	SOLA LETTURA
40205	RO	Fondo Scala (= 30205)	SOLA LETTURA
40206	RO	Reserved for Future Use	RFU
40207	RO	Reserved for Future Use	RFU
40208	RO	Reserved for Future Use	RFU
40209	RO	Reserved for Future Use	RFU
40210	RO	Codice Univoco ID [0] (= 30211)	SOLA LETTURA
40211	RO	Codice Univoco ID [1] (= 30212)	SOLA LETTURA
40212	RO	Codice Univoco ID [2] (= 30213)	SOLA LETTURA
40213	RO	Codice Univoco ID [3] (= 30214)	SOLA LETTURA
40214	RO	Codice Univoco ID [4] (= 30215)	SOLA LETTURA
40215	RO	Codice Univoco ID [5] (= 30216)	SOLA LETTURA

<u>NOTE</u>

I "REGISTRI Offset" hanno valore di default pari a 0. Ogni "REGISTRI Guadagno" ha valore di default pari a 1000. Il valore 1000 significa fattore moltiplicativo x1, in questo modo per esempio, è possibile scrivere 500 e in questo modo moltiplicare il valore x0,5.

4.1 Descrizione mappa di memoria

30001: I primi due bit di questo registro rappresentano lo stato dei due ingressi digitali a bordo scheda (INPO, INP1 su CN4). Se 30001 = 0000000000000011 [bin] = 3 [dec], allora significa che tutti e due gli ingressi digitali sono ON.

30002 ... **30009** : questi registri contengono il valore attuale della corrente istantanea per ogni canale. Il dato è espresso in mA.

30034: I primi 8 bit di questo registro mostrano se la corrente di ogni canale è sotto i 200 mA o no. Questa soglia viene presa come riferimento per determinare lo stato dei fusibili.

30040 ... 30049 : questi registri mostrano le temperature lette (T1 e T2), la tensione (sul connettore CN3) ecc...

30052 ... 30059 : questi registri contengono il valore di corrente medio degli ultimi 6 secondi. Naturalmente questi valori sono più stabili rispetto ai valori istantanei di corrente nei registri 30002 ... 30009

40001 : attraverso questo registro è possibile impostare la parità della comunicazione. Il valore di default è zero, e cioè "NO Parity"

40002 ... **40009** : questi sono i registri riguardanti l'Offset. Questi REGISTRI (il cui valore di default è 0) consentono di aggiungere un valore costante al corrispondente valore letto. Questi valori permettono di correggere un possibile errore costante in lettura. Per esempio se 30002 mostra 2300 (cioè che il canale CH1 legge 2,3 A), scrivendo 40002 = 200 il nuovo valore letto sarà 30002 = 2500 (cioè CH1 = 2,5 A).

40052 ... **40059** : questi sono i registri che gestiscono il Guadagno. Questi REGISTRI (il cui valore di default è 1000) consentono di moltiplicare una costante per il valore letto. Ciò permette di correggere un eventuale errore di lettura. Per esempio se 30002 mostra 2300 (significa che il canale CH1 legge 2,3 A), scrivendo 40052 = 1500 il nuovo valore sarà 30002 = 3450 (ovvero CH1 = 3,45 A, 2300 x 1,5 = 3450).

40101 ... **40108** : questi sono 8 registri disponibili per l'utente. Possono contenere dati utili al cliente, ad esempio un numero progressivo diverso per ogni scheda.

40201 : Tipo di Shunt (= 30204) - SOLA LETTURA

40202 : Modello SMU (= 30202) - SOLA LETTURA

40203 : Versione Firmware (= 30201) - SOLA LETTURA

40204: Numero Canali (= 30203) - SOLA LETTURA

40205 : Fondo Scala (= 30205) - SOLA LETTURA

40206 ... 40209 : Non Utilizzato - Reserved for Future Use (RFU)

40210 ... 40215 : Registro ID del dispositivo (96 bit) (organizzato in sei WORD a 16 bit) **univoco** per qualsiasi scheda. (= 30211 ... 30216) - SOLA LETTURA

L'identificativo univoco del dispositivo è ideale:

- da utilizzare come numero di serie (ad esempio numero di serie delle stringhe o altre applicazioni finali).
- da utilizzare come parte delle chiavi di sicurezza per aumentare la sicurezza.

L'identificativo univoco del dispositivo a 96 bit fornisce un numero di riferimento che è unico per qualsiasi dispositivo e in qualsiasi contesto. Questi bit non possono essere modificati dall'utente. Il codice è composto dalle seguenti parti :

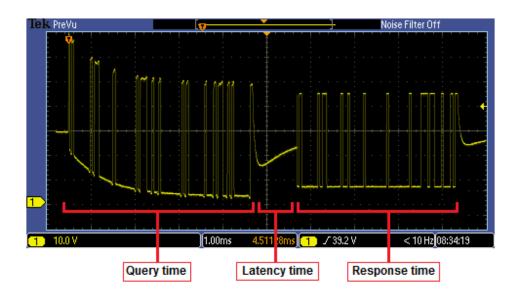
```
UID [31:00] : Coordinate X e Y del wafer espresse in formato BCD
UID [39:32] : WAF_NUM [07:00] > Numero del Wafer (Numero senza Segno a 8-bit)
UID [63:40] : LOT_NUM [23:00] > Numero del Lotto (codificato ASCII)
UID [95:64] : LOT_NUM [55:24] > Numero del Lotto (codificato ASCII)
```

4.2 Velocità di lettura

I valori analogici di corrente, tensione e temperatura sono letti simultaneamente 10 volte al secondo (tempo di scansione = 100 msec), dopodiché i valori letti sono inseriti nelle rispettive FIFO (una FIFO per ogni valore analogico), in grado di

contenere ciascuna 16 valori. Il valore letto dalla scheda è il valore di media mobile della FIFO, cioè è la media dei 16 valori letti (1.6 sec), aggiornata ogni 100 msec. Viene eseguita questa operazione per rendere più stabile la lettura ed è un buon compromesso fra stabilità e velocità di lettura.

I valori istantanei dell'analogica sono temporaneamente salvati in locazioni nascoste della mappa di memoria, non accessibili dalla porta seriale.


Il tempo di aggiornamento dipende dal tempo di polling dello SCADA e dal baud rate della comunicazione.

Il tempo totale richiesto per leggere la scheda via porta seriale è diviso in tre tempi: tempo di richiesta, tempo di latenza e il tempo di risposta.

Il tempo di richiesta è il tempo necessario allo SCADA per inviare la richiesta attraverso un pacchetto MODBUS e dipende dal baud rate (circa 4 msec con un baud rate di 19200).

Tempo di latenza è il tempo necessario alla scheda per elaborare il pacchetto di richiesta e preparare la risposta da inviare, questo tempo è compreso fra 1 e 2 msec ed è indipendente dal baud rate.

Tempo di risposta è il tempo necessario alla scheda per inviare il pacchetto di risposta MODBUS, questo tempo dipende dal baud rate e dal numero di registri letti, per un singolo registro con un baud rate di 19200 è circa 4 msec. Così con un baud rate di 19200 il tempo totale necessario a leggere un singolo registro sarà circa di 10 msec., è necessario aggiungere 1 msec per ogni altro registro che debba essere letto, per esempio per leggere 16 registri con una singola richiesta saranno necessari 10 msec + 15 * 1 msec = 25 msec

5 CODICI D'ORDINE

Qui di seguito i codici d'ordine :

CODICE	DESCRIZIONE	
ST0N 0825\NC	Controllo stringhe con supporto DIN	
ST0N 0825\NK	Controllo stringhe senza supporto DIN	

6 CONTATTI

GENERALE

Tel: 059 469978 sito: www.kernelgroup.it e-mail: info@kernelgroup.it

COMMERCIALE

Sig.ra Linda Mammi Tel: 059 469978 Int. 207 e-mail: sales@kernelgroup.it Skype: mammi.kernel

AMMINISTRAZIONE

Sig.ra Paola Morandi Tel: 059 469978 Int. 201 e-mail: amministrazione@kernelgroup.it Skype: morandi.kernel

ACQUISTI e PRODUZIONE

Sig. Stefano Catuogno Tel: 059 469978 Int. 204 e-mail: produzione@kernelgroup.it Skype: catuogno.kernel

UFFICIO TECNICO

Sig. Alessandro Muratori Tel: 059 469978 Int. 205 e-mail: alessandro.muratori@kernelgroup.it Skype: muratori.kernel

Assistenza
Tel: 059 469978 Int. 209
e-mail: support@kernelgroup.it
Skype: support.kernel

Sig. Morisi Luca

e-mail: luca.morisi@kernelgroup.it Skype: morisi.kernel

Kernel Sistemi s.r.l., via Vignolese n. 1138 41126 Modena - ITALY Tel. 059 469 978 - Fax 059 468 874 www.kernelgroup.it